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Equivalent Current Density Reconstruction
for Microwave Imaging Purposes

SALVATORE CAORSI, GIAN LUIGI GRAGNANI, AND MATTEO PASTORINO

Abstract —The possibilities of reconstructing the distribution of the
equivalent current density vector in a domain with a known volume, V,
inside which dielectric scatterers stand at arbitrary locations, are studied
by means of numerical computer simulations. An integrodifferential formu-
lation of the three-dimensional electromagnetic inverse scattering is trans-
formed into matrix form through the application of the moment method. A
pseudoinversion algorithm overcoming ill-conditioned problems is used to
obtain the distribution of the equivalent current density also in the case
where the input data (i.e., the simulated values of the scattered field vector
to be obtained in an observation domain) are affected either by Gaussian
noise or by uniformly distributed errors. The results furnish information
that could be used to devise a possible imaging method for detecting the
locations and surface shapes of scattering objects.

I. INTRODUCTION

N RECENT YEARS, there has been a growing interest

in the capabilities of microwave imaging as a technique
for determining the dielectric permittivity distribution in
inhomogeneous materials. Some works [1]-[5] have been
developed on the basis of the so-called Fourier diffraction
projection theorem {1], which is the basis for diffraction
tomography, and have been successfully applied in the
case of weakly scattering inhomogeneities. To study weak
electromagnetic scattering, some approximations can be
used, such as those of Born and Rytov, and some tech-
niques have been devised which resemble the classic back-
projection methods [6], [7]. In some works, in order to deal
with strongly scattering objects, the moment method [8]
was used to develop algorithms for deducing the dielectric
characteristics of inhomogeneous bodies with two-dimen-
sional [9] and three-dimensional geometries [10]. In partic-
ular, the work by Guo and Guo [11] provides an extensive
theory for this kind of algorithm.

In the present work, by following the procedure pre-
sented in [11], we want to study the possibilities of recon-
structing the distribution of the equivalent current density
vector in a domain, called the investigation domain (inside
which unknown dielectric scatterers can be placed at arbi-
trary positions), on the basis of the knowledge of the
scattered electric field vector in a domain (external to the
investigation one) called the observation domain.

The purpose of this study is to obtain useful information
for deriving a possible imaging method which, instead of
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determining the dielectric permittivity, provides the loca-
tions and surface shapes of unknown objects in a space
region with an a priori known volume (investigation do-
main). To this end, the reconstruction is obtained, in a
three-dimensional geometry, by a numerical approach
based on the application of the moment method to the
inverse electromagnetic scattering equations and on a
pseudoinversion algorithm for the solution of the corre-
sponding linear system of algebraic equations. Special
attention should be devoted to those zones of the investi-
gation volume where the value of the reconstructed equiva-
lent current density becomes equal to zero, since this
situation does not directly prove the presence or the ab-
sence of scattering objects in those zones, unless informa-
tion is provided about the values of the electric field vector
at the points where the current density vanishes.

Finally, a number of numerical computer simulations
have been performed even in the case where the input data
(which are represented by the components of the electro-
magnetic field vectors measured in a region external to the
investigation one) are affected by noise levels correspond-
ing to low values of the signal-to-noise ratio or by signifi-
cant measurement errors.

1I. MATHEMATICAL FORMULATION

In this section, an electromagnetic scattering formula-
tion in terms of the electric field vector [11] is used to
determine the distribution of the equivalent current den-
sity vector inside an investigation domain when the scat-
tered electric field vector in an external observation
domain is known. The investigation domain has known
volume, V, and is immersed in a homogeneous dissipative
medium with a dielectric permittivity €,, an electric con-
ductivity ¢,, and a relative magnetic permeability equal
to 1.

If the volume V is exposed to an electromagnetic source
producing an incident electric field vector E _(r), under
the assumption that the mutual coupling is negligible, the
total electric field vector E (r) at any point r, in particu-
lar, inside the observation domain- D, can be expressed as
follows:

Etol(r) =E1nc(r)_E<calt(r) (1)
where E_,,.(r) is the scattered electric field vector due to

the dielectric properties of possible scattering objects pres-
ent inside V. Under these conditions, the total electric field
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vector outside the investigation volume V satisfies the
vector wave equation:

VXVXEM( ) kezEtot(r)=O ré&Vv (2)

whereas inside the investigation volume V, the following
relation holds:

VXVXEtot(r)—k:',(r)Etot(r)=O, revVv (3)

where k, and k,(r) represent the wavenumbers outside
and inside the investigation volume V, respectively, and
the notation “v X stands for the curl operation.

If we now substitute relation (1) into both (2) and (3),
and recall that

V XV XE,.(r)-kJE,(r)=0 (4)

everywhere, we obtain, after a few trivial steps, the follow-
ing relationships:

V XV X E(r) =
vV XV X Escatt(r)_

keEscatt(r) =0,

keEscatt(r) = (k

r&v

v(r) -

(5)
k2)Ea(r),
reV. (6)

By introducing an equivalent current density J,,, (6) can
be rewritten as follows:

vV XV XEscatt(r)_szscatt(r) = Jeq(") (7)

= jwko
where
I?}(") - kez)Etot(r)

7(r) =ﬁ0<k ®)

and

——(kp(r)—k2) =

Wity

(a(r)=o,)+ jo(e(r)—e.). (9)

In this way, by means of (5) and (7), the problem of
representing the possible presence of scattering inhomo-
geneities inside the investigation volume V' has been trans-
formed into a field—source problem in a homogeneous
medium.

It is worth noting that, if e(r) =€, and o(r) =90, we
have J, (r) = 0. Unfortunately, while J.,(r) # 0 is a suffi-
cient condition to state the presence of scattering objects,
Joq(r) = 0 is only a necessary, not a sufficient, condition to
prove the absence of inhomogeneities. To this end, the
knowledge of the total electric field vector at the points r*
where J,(r*) =0 can be determinant. In fact, if E, (r*)
# 0, then the situation J, (r*) =0 becomes a necessary
and sufficient condition to state that the dielectric charac-
teristics of r*, under the assumption of finite material
properties, are equal to those of the external surrounding
medium. On the contrary, if E,,(#*) =0, nothing can be
deduced about the nature of the material at »*, and
information can be obtained through a limiting operation.

In other words, the points inside the investigation vol-
ume, V, where J, (r) # 0 represent inhomogeneities; that
is, they indicate the presence of scattering objects, while
the points whose dielectric properties equal those of the
outside medium can be modeled with a null equivalent
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current density vector. However, care must be exercis.d in
considering the points where both the equivalent current
density vector and the total electric field vector become
equal to zero.

As is well known, the scattered electric field vector as a
solution to (7), under Sommerfeld’s radiation conditions
{12], can be written as follows:

Ecudr) = [ 1) Glr/r') i’ (10)
where G(r/r") is Green’s well-known dyadic function for
free space [13], [14]. Application of the moment method [8]
to (10) allows us to determine the equivalent current
density vector at a finite number of points inside the
investigation volume, on the basis of the knowledge of the
scattered electric field vector at a finite number M of
points inside the observation domain D. To this end, let us
represent the equivalent current density vector as a sum of
subsectional rectangular basis functions, as follows:

N
Ju(r) =X, 4,
1

This amounts to subdividing the investigation volume V'
into N subvolumes, and to assuming that J, is constant in
the related subvolume and equal to 0 elsewhere. Further-
more, if we use a finite number M of Dirac’s delta as
weighting functions for the observation domain D, we
obtain, starting from (10),

Z J G (/1) d

(11)

m=1,---, M

(12)

where r,, is the mth point inside the observation domain
D.

In this way, the integral equation (10) is transformed
into relation (12), which represents a linear system of 3M
algebraic equations with 3N unknowns. In fact, in this
system the unknown terms are the three Cartesian compo-
nents of the equivalent current density vector, J,, for each
of the N subvolumes of the investigation volume:

scatt (

(13)

while the known terms are the three Cartesian components
of the scattered electric field vector, E,,.(#,), for each of
the M points r, of the observation domain:

{Escatt ( m)

[J1={4,; p=x.y.z; n=1,-- N}

m=1.--.M}.

(14)

[escatt] = p=x,), 2.

In accordance with relation (1), these components can be
obtained, in the observation domain, by subtracting the
components of the incident electric field vector from those
of the total electric field vector.

Relation (12) can be rewritten in matrix form:

[GI[T] = [eqca] (15)

where the matrix of the coefficients, [G]., is obtained by
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calculating numerically the Cartesian components of the
integral appearing in (12) for each subvolume V, and each
point #,.

In the present paper, the solution of (15) is obtained by
using a pseudoinversion algorithm [15], [16] of matrix [G],
which, besides being useful to rectangular linear systems,
can overcome ill-conditioned problems [17]. In fact, appli-
cation of such a pseudoinversion algorithm, based on the
Gram-Schmidt orthogonalization procedure, allows one to
obtain such a solution to system (13) whereby the follow-
ing norms:

IG1T]-Tewaad | and [ (16)

are simultaneously minimized.

As 18 known, this minimization process allows one to
avoid errors that are caused by numerical instabilities due
to the inverse scattering formulation [9], [18], [19].

Therefore, the distribution of the Cartesian components
of the equivalent current density vector [J] inside the
discretized investigation volume is given by

[‘]]Z[G]+[escatt] (17)
where [G]* represents the pseudoinverse matrix obtained
by using the above-mentioned algorithm.

On the basis of relation (17), we can assess the possibili-
ties of detecting the presence and the surface shapes of
scattering objects inside the investigation volume V.

As stated above, an imaging procedure based on relation
(17) may be implemented, provided that the value of the
total electric field is taken into account where the equiva-
lent current density vanishes. Moreover, from a numerical
standpoint, since the calculated values of J, may be very
small, the introduction of appropriate thresholds to dis-
criminate the empty cells from the full ones would again
pose the problem of testing the total electric field vector
for the empty cells. We are currently developing a mi-
crowave imaging method that, as an extension of the
formulation used in this paper and on the basis of the
above considerations, allows us not only to localize but
also to perform the dielectric permittivity reconstruction
by resorting, where both J,, =0 and E,,, =0, to a numeri-
cal limiting operation in an appropriate iterative way, until
the spatial resolution imposed by the actual noise charac-
teristics is reached.

III. NUMERICAL EXaAMPLES

In this section, we report the results of several numerical
examples in which the presence of dielectric objects inside
the investigation volume, exposed to incident electromag-
netic waves, has been simulated by means of idealized
scatterers consisting in suitable equivalent current density
distributions.

In the first example, a scatterer of cubic shape, simu-
lated by a unit equivalent current density vector with
uniform spatial distribution, has been placed in a A -sided
investigation volume partitioned into 27 cubic subvolumes
(Fig. 1); in the example, the scatterer occupies one whole
subvolume (the 22nd). The observation domain is made up

J#r
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X1 9] 8| 7 % X1 8] 7] 6| x x | 21] %] 251 x
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Fig. 1. The cell numbering for the three-layered cubic investigation
volume (27 cells) and the positions of the observation points (27 points
marked with crosses).

of 27 equally spaced measurement points (A,/3) (the
points marked with crosses in Fig. 1) on three planes, each
parallel to one face of the mvestigation volume. As no
analytic relationship is available, the values of the compo-
nents of the scattered electric field vector in the observa-
tion domain have been obtained by numerically solving
the equation of the direct scattering problem. It is worth
noting that, in this way, the values of the scattered electric
field may be affected by errors due to the slow conver-
gence of the computation.

The above arrangement has turned out to be more suited
to obtaining significant results than other arrangements, in
which the measurement points are arranged on only one of
the three planes. In fact, such an arrangement allows an
acceptable reconstruction of the equivalent current den-
sity, even for distance values of the observation domain to
the center of the investigation volume that are equal to
some wavelengths; instead, other arrangements have re-
sulted in less accurate reconstructions for distance values
greater than A,. This confirms the fact that a better spatial
resolution is usually obtained when the input data are
recorded over a large solid angle.

In the case in which the distance of the observation
domain to the center of the investigation volume was
assumed to be equal to A, we obtained a reconstruction of
the amplitude of the equivalent current density in the 22nd
cell containing the scatterer with an error less than 0.01
percent. The results on the remaining cells, where a null
current density is expected (empty cells), are illustrated in
Fig. 2. This figure shows the number of subvolumes for
which the normalized values of the amplitude of the cur-
rent density vector (which are expressed as percent values
of the original value of the 22nd cell) are included in the
values of the corresponding interval on the axis of abscis-
sas. In this figure, as well as in the following ones, |J| and
|J: | stand for the original and calculated amplitudes of the
current densities in the ith cell, respectively.

In order to evaluate the effects of a scatterer’s location
inside the investigation volume, the equivalent current
density has been reconstructed by making the scatterer
coincide with successive different subvolumes. Fig. 3 shows
the global results of this simulation, concerning the nor-
malized current values in the empty cells (27X 26 cells).
This figure provides important information about the
probability of wrong localizations or of incorrect defini-
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Fig. 2. Number of empty cells for which the normalized values of the
amplitude of the current density vector (which are expressed as percent
values of the original value of the 22nd cell) are included in the values
of the corresponding interval on the axis of abscissas (first simulation
case).
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Fig. 3. Global results for the normalized values of the amplitude of the
current density in the empty cells (27X 26 cells) when the location of
the scatterer coincides with successive different subvolumes.

tions of the contour surfaces. In each simulation, the error
percentages regarding the reconstruction in a subvolume
containing a scatterer have been found to be less than 0.95
percent, and the worst case has turned out to be the one in
which the scatterer is located in the 11th cell.

Both the effects of realistic errors concerning the com-
ponents of the scattered electric field vector and those of
significant levels of additive Gaussian noise have been
assessed. To this end, the input data for the reconstruction
process have been modified by adding random error arrays
with uniform distributions between —w and w (w being
the maximum error percentage for the calculated electric
field) or with Gaussian distributions; such errors were
related to different values of the signal-to-noise ratio,
S/N. The normalized values of the equivalent current
density in the empty cells, obtained by these two sets of
simulations, are shown in Figs. 4 and 5, respectively. It is
worth noting how large w values correspond to low values
of the S/N ratio; for instance, w=>5 corresponds to
S/N = about 20 dB, and w =20 corresponds to S/N =
about 6 dB. ‘

Other computer simulations have been performed con- .

sidering the presence of more scatterers. In particular, in
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Fig. 4. Effects of random measurement errors characterized by a uni-
form distribution (between —w and w percent of the calculated
electric field) on the normalized values of the reconstructed amplitude
of the current density vector in the empty cells.
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Fig. 5. Effects of Gaussian noise on the normalized values of the
reconstructed amplitude of the current density vector in the empty
cells.
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Fig. 6. Values of the normalized amplitude of the equivalent current
density vector, reconstructed in the three layers of the investigation
volume. The cells containing scatterers are the ninth and the 22nd.

the same investigation volume, two idealized scatterers
have been placed as in the previous simulations. Fig. 6
shows the values of the amplitude of the equivalent current
density vector, reconstructed in the three layers of the
investigation volume, for the case where the cells contain-
ing scatterers are the ninth and the 22nd. The locations of
the two scatterers have then been varied, until (2;) possi-
ble combinations have been considered. In each case, the
maximum error in the reconstruction of the equivalent
current density vector for the cell containing scatterers has
turned out to be less than 1.0 percent. Fig. 7 shows the
normalized percent values of the equivalent current in the

empty cells (in total, 2; X 25 cells). Of the (2;) possible

combinations, the best results have been obtained in the
case where the scatterers occupied the 12th and 19th celis
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Fig. 8. Error percentage related to the reconstruction of the equivalent
current density vector in the 12th and 19th cells in the case of additive

Gaussian noise.
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Fig. 9. Effects of Gaussian noise on the normalized values of the
reconstructed amplitude of the current density vector in the empty cells
in the case where the cells containing scatterers are the 12th and 19th.

or for configurations symmetrical with the present one in
terms of the problem geometry.

The error percentage related to the reconstruction of the
equivalent current density vector in the 12th and 19th cells
is shown in Fig. § for the case of additive Gaussian noise.
Fig. 9 gives the normalized percent values of the equivalent
current density in the empty cells, in the same case as in
Fig. 8.

The configuration that has yielded the worst results is

" the one in which the two scatterers occupy the seventh and
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current density vector in the seventh and 17th cells in the case of
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Fig. 11. Effects of Gaussian noise on the normalized value of the
reconstructed amplitude of the current density vector in the empty cells
in the case where the cells containing scatterers are the seventh and

17th.

17th cells (as well as other configurations symmetrical with
this one). Fig, 10 gives the results of the reconstruction in
the cells containing the scatterers, in the case of Gaussian
noise. Fig. 11 gives the reconstruction errors for the empty
cells, in the same case.

To assess the possibility that, in a particular cell, the
error may accumulate to a much greater value when more
scattering objects are present inside the investigation vol-
ume, further studies have been made simulating this spe-
cific situation. Even in the case of incorrect data, the
results have shown a negligible error in the reconstruction
of the scatterer and a slight increase in the normalized
current values in the empty cells. Fig. 12 illustrates the
normalized current values in the case of five scatterers.

Finally, in other numerical simulations, an investigation
volume measuring (5A,)°, partitioned into 27 cubic cells,
has been considered. A scatterer, equal to those previously
utilized, has been placed in the center of the 22nd cell. The
observation domain was made up of 27 points arranged as
those considered in the previous simulations. The distance
between the observation domain and the center of the
investigation volume was 8 /3.

The effects of Gaussian noise on the reconstruction of
the scatterer are shown in Fig. 13. Fig. 14 shows the results
relevant to the empty cells. Figs. 15 and 16 present the
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Fig. 14. Effects of ‘Gaussian noise on the normalized values of the
reconstructed amplitude of the current density vector in the empty cells
in the case of a (5A,)* investigation volume.

results obtained in the case of a uniform error introduced
into the input data. It should be noted that, as the scat-
terer’s dimensions are smaller than those of the discretiza-
tion volume, one can expect to reconstruct, inside the 22nd
cell, an average equivalent current density with a vector
equal to 1/125, as compared with the original current
density.

1V. - CONCLUSIONS

In this paper, a widely known approach to electromag-
netic inverse scattering has been employed to determine
the distribution of the equivalent current density vector in
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Fig. 16. Effects of a umformly distributed error on the normalized
values of the reconstructed amplitude of the current density vector in
the empty cells in the case of a (5A,)° investigation volume.

a three-dimensional geometry. The moment method has
been applied to transform the integrodifferential formula-
tion into matrix form, which has been solved by using a
pseudoinversion algorithm to overcome ill-conditioned
problems. By means of this numerical technique, we have
been able to assess the possibilities of reconstructing the
equivalent current density introduced by the presence of
dielectric objects inside an investigation domain with an
a priori known volume V.

Numerical simulations have been performed usmg
a priori known values of the equivalent current density,
and starting from the calculated values of the scattered
electric field vector also in the case where the input data
were affected by Gaussian no1se or by uniformly dlS—
tributed errors.

The results of the computer simulations are satisfactory
and prov1de useful information for developing a mi-
crowave imaging method for detecting the presence and
the surface shapes of unknown dielectric objects, provided
that particular care is exercised in those critical situations
where both the equivalent current and the -total electric
field become equal to zero. In a work under current
development, where we deal also with dielectric permittiv-
ity reconstruction, we suggest performing, in such critical
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cases, a numerical limiting operation until the required
spatial resolution values are reached.
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